Home Image This Compound
loading

Images of (+)-1-[(S)-1-Methoxyethyl]cyclohexanol

Based on Quantum Chemical Computations

Executive Summary

High-quality images and the structure datafile of (+)-1-[(S)-1-Methoxyethyl]cyclohexanol based on a decent quantum chemical calculation have been prepared on this webpage, which are useful not only for further scientific research and development but also for preparing professional reports, articles, presentations, webpages, books, etc. The (+)-1-[(S)-1-Methoxyethyl]cyclohexanol images of 3-dimensional (3D) molecular structures, molecular surfaces, molecular orbitals, and an optimized 3D structure datafile (SDF/MOL File) are readily accessible for purchase, which have been generated on the basis of data derived from quantum chemical computations under DFT (Density Functional Theory) - B3LYP functional with 6-31G* basis set. The images have been generated on an automatic basis using the image generation engines developed as a part of Mol-Instincts Web-Information Project.

Identification of Target Chemical Substance

Due to the complicated nature of chemical substances, the pure substance to be dealt with on this webpage (target chemical substance) needs to be confirmed whether it is truly the one you are anticipating. Identification should be based upon not only its name but also its structure and/or other identifiers.

The target chemical substance is typically called “(+)-1-[(S)-1-Methoxyethyl]cyclohexanol”. It contains a total of 29 atom(s) , consisting of 18 Hydrogen atom(s), 9 Carbon atom(s), and 2 Oxygen atom(s). As for the chemical bonds and functional groups, a total of 29 bond(s) comprising 11 non-H bond(s), 2 rotatable bond(s), 1 six-membered ring(s), 1 hydroxyl group(s), 1 tertiary alcohol(s), and 1 ether(s) (aliphatic) exist within the chemical structure.

The 2-dimensional (2D) structure, IUPAC name, formula, molecular weight, and other identifiers of (+)-1-[(S)-1-Methoxyethyl]cyclohexanol are given below:

(+)-1-[(S)-1-Methoxyethyl]cyclohexanol 2D structure
compound infomation
IUPAC Name 1-[(1S)-1-methoxyethyl]cyclohexan-1-ol
Chemical Formula C9H18O2
Molecular Weight 158.23802 g/mol
SMILES String COC(C)C1(O)CCCCC1
InChI InChI=1S/C9H18O2/c1-8(11-2)9(10)6-4-3-5-7-9/h8,10H,3-7H2,1-2H3/t8-/m0/s1
InChIKey HWDVQFQAZBFXNI-QMMMGPOBSA-N

Note that the IUPAC name, chemical formula, molecular weight, and SMILES (Simplified Molecular-Input Line-Entry System) string are supplementary and are not “necessary & sufficient” conditions for the identification. The 2D structure, InChI (International Chemical Identifier) and InChIKey are however unique identifiers. As an additional supplementary information for the identification, the (+)-1-[(S)-1-Methoxyethyl]cyclohexanol is also called in various chemical industries as given in this URL link.

Quantum Chemical Calculations

A robust quantum chemical calculation was performed to obtain physically meaningful structure data and images. A large number of test runs have been performed to determine an optimal combination of calculation methods (e.g., Hartree-Fock, Density Functional Theory; DFT, etc.) and basis sets (e.g., STO-3G, 6-31G*, etc.). Based on the prediction accuracy analysis of entropy, dipole moment, frequency, heat capacity, magnetic susceptibility, polarizability, radius of gyration, van der Waals area, and van der Waals volume, it was concluded that the DFT-B3LYP functional with 6-31G* basis set is an optimal combination, which provides a decent accuracy as well as a reasonable computation time.

The initial 3D structure of (+)-1-[(S)-1-Methoxyethyl]cyclohexanol was generated automatically by making use of the structure generation engine of Mol-Instincts, a chemical database powered by 41 patented technologies based on quantum chemical computations, statistical thermodynamics, QSPR (Quantitative Structure-Property Relationship), and an artificial neural network-based AI (Artificial Intelligence). Geometry optimization and frequency calculation followed by the RI-MP2 energy correction have been performed for (+)-1-[(S)-1-Methoxyethyl]cyclohexanol using the DFT-B3LYP functional with 6-31G* basis set. The optimized structure of (+)-1-[(S)-1-Methoxyethyl]cyclohexanol was verified to be at a true minimum with no imaginary frequencies.

Prior to performing the geometry optimization, the starting structure of the target chemical substance was determined with a great care to obtain a reliable optimized geometry without imaginary frequencies originated from local minima. The initial 3D structure generated by the structure generation engine was processed by a detailed conformer analysis when single bond(s) exist(s) in the target chemical substance. Depending on the number of the single bonds in the target substance, up to tens of thousands of conformers have been generated automatically. Subsequently, a simple potential energy calculation based on the MMFF94s force field was carried out for each conformer. The conformer with the lowest potential energy was then used as the starting structure of the geometry optimization.

Optimized 3D Structure Images of (+)-1-[(S)-1-Methoxyethyl]cyclohexanol

Using the geometry optimization results, high-quality images of 3D molecular structures have been prepared for (+)-1-[(S)-1-Methoxyethyl]cyclohexanol in 3 different models, namely, stick, ball & stick, and space-filling, which provide not only the basic structure information but also a physically meaningful configuration (e.g., bond lengths, bond angles, etc.) at the lowest energy level. The animated gif of the ball & stick model is also provided for a better visualization, which may be useful for further professional presentation and/or web publication.

  • This image is not available
    Title
    Stick Model Image of Optimized (+)-1-[(S)-1-Methoxyethyl]cyclohexanol Structure
    Description
    Stick model image of 3D molecular structure of (+)-1-[(S)-1-Methoxyethyl]cyclohexanol created based on the quantum chemical geometry optimization results under DFT-B3LYP functional with 6-31G* basis set.
    Product Type
    Portable Network Graphics (PNG) 2,000 x 2,000 pixels
    Price
    $ USD per user per publication
    Buy Now
  • This image is not available
    Title
    Ball & Stick Model Image of Optimized (+)-1-[(S)-1-Methoxyethyl]cyclohexanol Structure
    Description
    Ball & stick model image of 3D molecular structure of (+)-1-[(S)-1-Methoxyethyl]cyclohexanol created based on the quantum chemical geometry optimization results under DFT-B3LYP functional with 6-31G* basis set.
    Product Type
    Portable Network Graphics (PNG) 2,000 x 2,000 pixels
    Price
    $ USD per user per publication
    Buy Now
  • This image is not available
    Title
    Space-filling Model Image of Optimized (+)-1-[(S)-1-Methoxyethyl]cyclohexanol Structure
    Description
    Space-filling model image of 3D molecular structure of (+)-1-[(S)-1-Methoxyethyl]cyclohexanol created based on the quantum chemical geometry optimization results under DFT-B3LYP functional with 6-31G* basis set.
    Product Type
    Portable Network Graphics (PNG) 2,000 x 2,000 pixels
    Price
    $ USD per user per publication
    Buy Now
  • This image is not available
    Title
    Ball & Stick Model Animated Gif of Optimized (+)-1-[(S)-1-Methoxyethyl]cyclohexanol Structure
    Description
    Ball & stick model animated gif of 3D molecular structure of (+)-1-[(S)-1-Methoxyethyl]cyclohexanol created based on the quantum chemical geometry optimization results under DFT-B3LYP functional with 6-31G* basis set.
    Product Type
    Animated Graphics Interchange Format (GIF) 800 x 800 pixels
    Price
    $ USD per user per publication
    Buy Now

3D Molecular Surface Images of (+)-1-[(S)-1-Methoxyethyl]cyclohexanol

High-quality images of van der Waals and solvent-accessible surface have been prepared based on the optimized structure of (+)-1-[(S)-1-Methoxyethyl]cyclohexanol. The animated gif of van der Waals surface is provided as well for a better observation and for presentation and/or web publication.

  • This image is not available
    Title
    van der Waals Surface Image of Optimized (+)-1-[(S)-1-Methoxyethyl]cyclohexanol Structure
    Description
    van der Waals surface image of (+)-1-[(S)-1-Methoxyethyl]cyclohexanol based on the optimized 3D structure determined by quantum chemical geometry optimization under DFT-B3LYP functional with 6-31G* basis set.
    Product Type
    Portable Network Graphics (PNG) 2,000 x 2,000 pixels
    Price
    $ USD per user per publication
    Buy Now
  • This image is not available
    Title
    Solvent-accessible Surface Image of Optimized (+)-1-[(S)-1-Methoxyethyl]cyclohexanol Structure
    Description
    Solvent-accessible surface image of (+)-1-[(S)-1-Methoxyethyl]cyclohexanol based on the optimized 3D structure determined by quantum chemical geometry optimization under DFT-B3LYP functional with 6-31G* basis set.
    Product Type
    Portable Network Graphics (PNG) 2,000 x 2,000 pixels
    Price
    $ USD per user per publication
    Buy Now
  • This image is not available
    Title
    van der Waals Surface Animated Gif of Optimized (+)-1-[(S)-1-Methoxyethyl]cyclohexanol Structure
    Description
    van der Waals surface animated gif of (+)-1-[(S)-1-Methoxyethyl]cyclohexanol based on the optimized 3D structure determined by quantum chemical geometry optimization under DFT-B3LYP functional with 6-31G* basis set.
    Product Type
    Animated Graphics Interchange Format (GIF) 800 x 800 pixels
    Price
    $ USD per user per publication
    Buy Now

3D Molecular Orbital Images of (+)-1-[(S)-1-Methoxyethyl]cyclohexanol

Using the geometry optimization results, high-quality images of 3D molecular structures have been prepared for (+)-1-[(S)-1-Methoxyethyl]cyclohexanol in 3 different models, namely, stick, ball & stick, and space-filling, which provide not only the basic structure information but also a physically meaningful configuration (e.g., bond lengths, bond angles, etc.) at the lowest energy level. The animated gif of the ball & stick model is also provided for a better visualization, which may be useful for further professional presentation and/or web publication.

  • This image is not available
    Title
    HOMO Image of Optimized (+)-1-[(S)-1-Methoxyethyl]cyclohexanol Structure
    Description
    HOMO (Highest Occupied Molecular Orbital) image of (+)-1-[(S)-1-Methoxyethyl]cyclohexanol based on the 3D structure determined by quantum chemical geometry optimization under DFT-B3LYP functional with 6-31G* basis set.
    Product Type
    Portable Network Graphics (PNG) 2,000 x 2,000 pixels
    Price
    $ USD per user per publication
    Buy Now
  • This image is not available
    Title
    LUMO Image of Optimized (+)-1-[(S)-1-Methoxyethyl]cyclohexanol Structure
    Description
    LUMO (Lowest Unoccupied Molecular Orbital) image of (+)-1-[(S)-1-Methoxyethyl]cyclohexanol based on the 3D structure determined by quantum chemical geometry optimization under DFT-B3LYP functional with 6-31G* basis set.
    Product Type
    Portable Network Graphics (PNG) 2,000 x 2,000 pixels
    Price
    $ USD per user per publication
    Buy Now
  • This image is not available
    Title
    HOMO Animated Gif of Optimized (+)-1-[(S)-1-Methoxyethyl]cyclohexanol Structure
    Description
    HOMO (Highest Occupied Molecular Orbital) animated gif of (+)-1-[(S)-1-Methoxyethyl]cyclohexanol based on the 3D structure determined by quantum chemical geometry optimization under DFT-B3LYP functional with 6-31G* basis set.
    Product Type
    Animated Graphics Interchange Format (GIF) 800 x 800 pixels
    Price
    $ USD per user per publication
    Buy Now
  • This image is not available
    Title
    LUMO Animated Gif of Optimized (+)-1-[(S)-1-Methoxyethyl]cyclohexanol Structure
    Description
    LUMO (Lowest Unoccupied Molecular Orbital) animated gif of (+)-1-[(S)-1-Methoxyethyl]cyclohexanol based on the 3D structure determined by quantum chemical geometry optimization under DFT-B3LYP functional with 6-31G* basis set.
    Product Type
    Animated Graphics Interchange Format (GIF) 800 x 800 pixels
    Price
    $ USD per user per publication
    Buy Now

Optimized 3D Structure Datafile (SDF/MOL File) of (+)-1-[(S)-1-Methoxyethyl]cyclohexanol

For those who want to create their own images using custom software, the structure datafile (SDF/MOL file) of (+)-1-[(S)-1-Methoxyethyl]cyclohexanol has been prepared and made available for purchase below. This structure datafile may readily be imported to most of the chemistry-related software packages, performing custom visualization as well as further scientific analysis. Given that many computational software and visualization programs require the structural information of the target molecule, the SDF/MOL file below would come in handy to fulfill your immediate needs.

As the structure data included in the SDF/MOL file below represent an optimized structure of (+)-1-[(S)-1-Methoxyethyl]cyclohexanol obtained from the quantum chemical geometry optimization under DFT-B3LYP functional with 6-31G* basis set, it would be an excellent starting geometry for further intensive quantum calculations while significantly lowering the overall computation time.

  • Title
    Structure Datafile (SDF/MOL File) of Optimized (+)-1-[(S)-1-Methoxyethyl]cyclohexanol
    Description
    SDF/MOL File of (+)-1-[(S)-1-Methoxyethyl]cyclohexanol determined by quantum chemical geometry optimization under DFT-B3LYP functional with 6-31G* basis set.
    Product Type
    Text
    Price
    Nonprofit    $ USD
    For-Profit    $ USD
    Buy Now

Search Other Chemical Substances

Click the link on the right to search for the images and structure datafiles of other chemical substances.

Go to Search

More Information of (+)-1-[(S)-1-Methoxyethyl]cyclohexanol

Further scientific and engineering information on (+)-1-[(S)-1-Methoxyethyl]cyclohexanol are accessible from Mol-Instincts. The URL links of the available physicochemical, thermodynamic, and transport properties are listed below:


The above properties are provided as constant values, while the properties listed below are provided as a function of temperature:


The following links provide the spectra information of (+)-1-[(S)-1-Methoxyethyl]cyclohexanol for the activities in analytical chemistry:


For the properties related to the pharmaceutical area, visit the following URL links:


Visit the link below for the 3D visualization, a detailed observation of the structure by zooming and rotating the molecule, measuring bond distances & angles, vibrational frequency analysis with animation, and a detailed molecular orbital generation and analysis in addition to the HOMO and LUMO for the optimized geometry of the (+)-1-[(S)-1-Methoxyethyl]cyclohexanol


The raw data of summarized quantum chemical calculation results, i.e., the summarized results of the geometry optimization and frequency calculation followed by the RI-MP2 energy correction for (+)-1-[(S)-1-Methoxyethyl]cyclohexanol using the DFT-B3LYP functional with 6-31G* basis set are available at the following link:


The raw data of over 2,000 molecular descriptor values for (+)-1-[(S)-1-Methoxyethyl]cyclohexanol are available at the link below:

About Mol-Instincts Web-Information Project

For our Mol-Instincts and/or ChemRTP users to be more efficient in accessing the required data and information, we are publishing the webpages providing various properties of pure chemical substances that may be readily found by Google search. All the data and information in these webpages are originated from Mol-Instincts or ChemRTP. The amount of data and information to be published is up to 10 billion sets.

Mol-Instincts is a fundamental chemical database powered by 41 patented technologies based on quantum chemical, statistical thermodynamics, QSPR (Quantitative Structure-Property Relationship), and artificial neural network-based AI (Artificial Intelligence).

ChemRTP is a real-time predictor of the various properties of pure chemical substances based on QSPR (Quantitative Structure-Property Relationship), and artificial neural network-based AI (Artificial Intelligence).

Mol-Instincts and ChemRTP have been cited a number of times in high-impact scientific journals including but not limited to NATURE, ELSEVIER, Springer, American Chemical Society (ACS), Royal Society of Chemistry (RSC), Wiley, etc.

The image generation engine has been developed as a part of Mol-Instincts and ChemRTP platform to process dozens of millions of chemical substances at a time on an automatic basis. This process is executed on a parallel computational platform equipped with thousands of CPU cores. The engine is now applied to generate the images available on the web, targeting billions of pure substance images to be created in a few years.

59 The contents of this page can freely be shared if cited as follows:
Source: Chemical Compounds Deep Data Source (CCDDS; https://www.molinstincts.com) based on 41 patented QSQN and QN technology
commercialized into Mol-Instincts database and ChemRTP, ChemEssen, Inc (2024).

Subscribe to our newsletter

Join our subscribers list to get the latest news, updates and special offers delivered directly in your inbox.